ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Ослепление

Один разок можно прочесть >>>>>

Украденная ночь

В сравнении с двумя предыдущими, эта супер интересная. Прочитала на одном дыхании >>>>>

Королевство грез

Роман просто волшебный! >>>>>

В сетях соблазна

Хорошая сказка, с адекватными героями. Концовка немного быстрая >>>>>




  41  

Представьте себе бублик из податливой, но необычайно прочной резины, который вы можете как угодно крутить, сжимать и растягивать в любом направлении. Независимо от того, как деформирован такой бублик, некоторые его свойства остаются неизменными. Например, в нем всегда есть дыра.

В топологии бублик принято называть тором. Соломинка, через которую вы пьете коктейли или прохладительные напитки, тоже тор, только вытянутый. С точки зрения топологии бублик и соломинка ничем не отличаются.

Топологию не интересуют свойства фигур, связанные с длиной, площадью, объемом и тому подобными количественными характеристиками. Она занимается изучением наиболее глубоких свойств фигур и тел, которые остаются неизменными при самых чудовищных деформациях, без разрывов и склеиваний. Если бы тела и фигуры разрешалось разрывать и склеивать, то любое тело сколь угодно сложной структуры можно было бы превратить в любое другое тело с какой угодно структурой, и все первоначальные свойства были бы безвозвратно утрачены. Поразмыслив немного, вы поймете, что топология занимается изучением самых простых и в то же время самых глубоких свойств, какими только обладает тело.

Чтобы пояснить суть дела, приведем типичную топологическую задачу. Представьте себе поверхность тора, сделанную из тонкой резины, наподобие велосипедной камеры. Предположим, что в стенке тора проколота крохотная дырочка. Можно ли через эту дырочку вывернуть тор наизнанку, как выворачивают велосипедную камеру? Решить эту задачу «в уме», руководствуясь только своим пространственным воображением, — дело нелегкое.

Хотя еще в восемнадцатом веке многие математики бились над решением отдельных топологических задач, начало систематической работы в области топологии было положено Августом Фердинандом Мебиусом, немецким астрономом, преподававшим в Лейпцигском университете в первой половине прошлого века. До Мебиуса все думали, что у любой поверхности две стороны, как у листа бумаги. Именно Мебиус совершил обескураживающее открытие: если взять полоску бумаги, перекрутить ее на полоборота, а концы склеить, то получится односторонняя поверхность, обладающая не двумя, а однойединственной стороной!

Если вы возьмете на себя труд изготовить такую полоску (топологи называют ее листом Мебиуса) и тщательно присмотритесь к ее «устройству», вы сможете убедиться, что у нее действительно лишь одна сторона и один край.

Трудно поверить, что такое вообще может быть, но односторонняя поверхность действительно существует — реальная, осязаемая вещь, которую каждый может построить в один миг. В том, что у листа Мебиуса есть лишь одна сторона, сомневаться не приходится, и это свойство он сохраняет, как бы вы ни растягивали и ни деформировали его.

Но вернемся к нашей истории. Я преподавал математику в Чикагском университете и защитил докторскую диссертацию по топологии, поэтому мне без особого труда удалось вступить в общество «Мебиус». Нас было не очень много — всего лишь двадцать шесть человек, главным образом чикагских топологов, но некоторые члены общества работали в университетах соседних городов.

Мы устраивали ежемесячные заседания, носившие сугубо академический характер, но раз в году — 17 ноября (в день рождения Мебиуса) — собирались на банкет и приглашали в качестве гостя какого-нибудь знаменитого тополога, который выступал с лекцией.

Не обходилось на наших банкетах и без развлечений. Но в нынешнем году с фондами у нас было туговато, и мы решили отпраздновать годовщину патрона нашего общества в «Пурпурных шляпах», где цены были вполне умеренные, а после лекции можно было спуститься в зал и посмотреть программу варьете. С гостем нам повезло: наше приглашение принял знаменитый профессор Сляпенарский, первый тополог мира и один из величайших математических гениев нашего века.

Профессор Сляпенарский пробыл в Чикаго несколько недель, читая в университете курс лекций по топологическим аспектам теории относительности Эйнштейна. Я имел с ним несколько бесед на профессиональные темы в университете, мы подружились, и я пригласил его на банкет.

В «Пурпурные шляпы» мы поехали вместе на такси, и по дороге я попросил его рассказать в общих чертах то, о чем он собирался говорить на лекции. Но Сляпенарский в ответ только улыбнулся и посоветовал запастись терпением, благо ждать осталось совсем недолго. Тема лекции «Нульсторонние поверхности» вызвала среди членов общества «Мебиус» такие оживленные толки, что даже профессор Роберт Симпсон из Висконсинского университета письменно уведомил правление о своем намерении прибыть на банкет. Ни на одном заседании в этом году профессор Симпсон присутствовать не соизволил!

  41