ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Змеиное гнездо

Как всегда, интересно >>>>>

Миф об идеальном мужчине

Чуть скомканно окончание, а так очень понравилось >>>>>

Меч и пламя

Прочесть можно, но ничего особо интересного не нашла. Обычный середнячок >>>>>

Сокровенные тайны

Вроде ничего, но мне хотелось бы концовки подобрей >>>>>

Брак не по любви

Ну и имя у героини. Не могли придумать что нибудь поромантичнее >>>>>




  75  

Именно по этой причине Бетховен, величайшая фигура в истории музыки, стоит ниже Шекспира. При сравнении Бетховена и Микеланджело на меня подействовал тот факт, что большее количество людей проводит время, слушая музыку, а не рассматривая картины или скульптуры. Поэтому я думаю, что композиторы в целом влиятельнее художников и скульпторов, чье положение в своей области искусства примерно равное. В общем и целом кажется справедливым поместить Бетховена почти в середине списка между Шекспиром и Микеланджело.

46. ВЕРНЕР ГЕЙЗЕНБЕРГ (1901–1976)

В 1932 году Нобелевская премия в области физики была присуждена Вернеру Карлу Гейзенбергу, немецкому физику, за его роль в создании квантовой механики — одного из наиболее важных достижений в истории науки. Механика — это раздел физики, который связан с основными законами, управляющими движением материальных объектов. Это наиболее фундаментальный раздел физики, которая, в свою очередь, является наиболее фундаментальной из всех наук. В начале двадцатого века постепенно стало очевидным, что принятые законы механики неспособны описать поведение мельчайших частиц, таких как атомы и составляющие их элементы. Это было огорчительно и загадочно, поскольку принятые законы отлично работали при применении их к макроскопическим объектам (то есть к объектам с гораздо большими размерами, чем отдельные атомы).

В 1925 году Вернер Гейзенберг предложил новую формулировку физики, которая в своих базовых концепциях радикально отличалась от классической формулировки Ньютона. Эта новая теория — после некоторой модификации, произведенной последователями Гейзенберга — имела огромный успех и сейчас принята как применимая ко всем физическим системам любых типов или размеров. Можно продемонстрировать математически, что там, где задействованы только макроскопические системы, прогнозы квантовой механики отличаются от прогнозов классической механики совсем немного. (По этой причине классическая механика — которая с математической точки зрения гораздо проще квантовой — все еще пригодна для большинства научных расчетов.) Однако там, где задействованы масштабы атома, прогнозы квантовой механики уже сильно отличаются от классической. Эксперименты показывают, что в этих случаях верны прогнозы квантовой механики. Один из выводов теории Гейзенберга — знаменитый «принцип изменчивости», который ученый сформулировал в 1927 году. Этот принцип считается одним из основополагающих и всеобъемлющих во всей науке. Принцип изменчивости показывает определенные теоретические границы нашей способности проводить научные измерения. Смысл этого принципа огромен. Если основные законы физики препятствуют ученому, находящемуся даже в идеальных условиях, получить точные данные о системе, которую он пытается исследовать, очевидно, что будущее поведение этой системы предсказать вообще невозможно. Согласно принципу неопределенности, никакие усовершенствования наших измерительных приборов никогда не позволят нам преодолеть эти трудности! Принцип изменчивости утверждает, что физика по самой природе вещей может сделать лишь статистические прогнозы. (Ученый, изучающий радиоактивность, например, может предсказать, что из триллиона атомов радия два миллиона на следующий день будут излучать гамма-лучи. Однако он не в состоянии предсказать, поведет ли себя так же любой отдельный атом.) На практике это не очень серьезное ограничение. Там, где задействованы большие размеры, статистические методы часто могут обеспечить прочную основу для действия, но там, где задействованы малые размеры, статистические прогнозы совсем не прочны. Фактически в области малых размеров принцип изменчивости заставляет нас отказаться от наших идей точной физической причинной связи. Это представляет наиболее глубокое изменение в основе философии науки, столь глубокое, что такой великий ученый, как Эйнштейн, однажды сказал: «Бог играет со Вселенной в кости». Однако это, по существу, всего лишь точка зрения, которую большинство современных физиков вынуждены признать.

Ясно, что с теоретической точки зрения квантовая теория, распространенная, возможно, даже больше теории относительности, изменила нашу базовую концепцию физического мира. Но выводы из этой теории не только философские. Среди примеров их практического применения есть такие современные приборы, как электронные микроскопы, лазеры и транзисторы. Квантовая теория также имеет широкое применение в ядерной физике, атомной энергетике, астрономии и химии. Она формирует основы наших представлений о спектроскопии, используется в теоретических исследованиях таких разнообразных тем, как свойства жидкого гелия, внутреннее строение звезд, ферромагнетизм и радиоактивность.

  75