ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Змеиное гнездо

Как всегда, интересно >>>>>

Миф об идеальном мужчине

Чуть скомканно окончание, а так очень понравилось >>>>>

Меч и пламя

Прочесть можно, но ничего особо интересного не нашла. Обычный середнячок >>>>>

Сокровенные тайны

Вроде ничего, но мне хотелось бы концовки подобрей >>>>>

Брак не по любви

Ну и имя у героини. Не могли придумать что нибудь поромантичнее >>>>>




  114  

Отметим также, что Великая теорема связана не только с алгебраической теорией чисел, но и с алгебраической геометрией, которая сейчас интенсивно развивается.

Но Великая теорема в общем виде еще не доказана. Поэтому мы вправе ожидать здесь появления новых идей и методов.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

«Можно считать, — пишет В.А. Никифоровский, — что теория вероятностей не как наука, а как собрание эмпирических наблюдений, сведений существует издавна, столько, сколько существует игра в кости. Действительно, опытный игрок знал и, вероятно, учитывал в игре, что разные выпадения числа очков имеют разную частоту появления. При метании трех костей, например, три очка могут выпасть только одним способом (по очку на каждой кости), а четыре очка — тремя способами: 2+1+1, 1+2+1, 1+1+2. Элементарные понятия теории вероятностей возникли, как уже было сказано, в связи с задачами азартных игр, обработки результатов астрономических наблюдений, задачами статистики, практики страховых обществ. Страхование получило широкое распространение вместе с развитием мореплавания и морской торговли».

Еще в шестнадцатом веке видные математики Тарталья и Кардано обратились к задачам теории вероятностей в связи с игрой в кости и подсчитали различные варианты выпадения очков.

Кардано в своей работе «Об азартной игре» привел расчеты, очень близкие к полученным позднее, когда теория вероятностей уже утвердилась как наука.

Тот же Кардано сумел подсчитать, сколькими способами даст метание двух или трех костей то или иное число очков. Он определил полное число возможных выпадений. Другими словами, Кардано вычислил вероятности тех или иных выпадений. Однако все таблицы и вычисления Тартальи и Кардано стали лишь материалом для будущей науки. «Исчисление вероятностей, всецело построенное на точных заключениях, мы находим впервые только у Паскаля и Ферма», — утверждает Цейтен.

Ферма и Паскаль действительно стали основателями математической теории вероятностей.

Блез Паскаль (1623–1662) родился в Клермоне. Вся семья Паскалей отличалась выдающимися способностями. Что касается самого Блеза, он с раннего детства обнаруживал признаки необыкновенного умственного развития.

В 1631 году, когда маленькому Паскалю было восемь лет, его отец переселился со всеми детьми в Париж, продав по тогдашнему обычаю свою должность и вложив значительную часть своего небольшого капитала в Отель де-Вилль.

Имея много свободного времени, Этьен Паскаль почти исключительно занялся умственным воспитанием сына. Он сам много занимался математикой и любил собирать у себя в доме математиков. Но, составив план занятий сына, он отложил математику до тех пор, пока сын не усовершенствуется в латыни. Каково же было удивление отца, когда он увидел сына, самостоятельно пытавшегося доказать свойства треугольника.

Собрания, проходившие у отца Паскаля и у некоторых из его приятелей, приобрели характер настоящих ученых заседаний. С шестнадцатилетнего возраста молодой Паскаль также стал принимать деятельное участие в занятиях кружка. Он был уже настолько силен в математике, что овладел почти всеми известными в то время методами, и среди членов, наиболее часто делавших новые сообщения, он был одним из первых.

Шестнадцати лет Паскаль написал весьма примечательный трактат о конических сечениях. Однако усиленные занятия вскоре подорвали и без того слабое здоровье Паскаля. В восемнадцать лет он уже постоянно жаловался на головную боль, на что первоначально не обращали особого внимания. Но окончательно расстроилось здоровье Паскаля во время чрезмерных работ над изобретенной им арифметической машиной.

Придуманная Паскалем машина была довольно сложна по устройству, и вычисление с ее помощью требовало значительного навыка. Этим и объясняется, почему она осталась механической диковинкой, возбуждавшей удивление современников, но не вошедшей в практическое употребление.

Со времени изобретения Паскалем арифметической машины имя его стало известным не только во Франции, но и за ее пределами.

В 1643 году Торричелли предпринял опыты по подъему различных жидкостей в трубках и насосах. Торричелли вывел, что причиною подъема, как воды, так и ртути, является вес столба воздуха, давящего на открытую поверхность жидкости.

Эти эксперименты заинтересовали Паскаля. Зная, что воздух имеет вес, он решает объяснить явления, наблюдаемые в насосах и в трубках, действием этого веса. Главная трудность, однако, состояла в том, чтобы объяснить способ передачи давления воздуха. Блез рассуждал так: если давление воздуха действительно служит причиной рассматриваемых явлений, то из этого следует, что чем меньше или ниже, при прочих равных условиях, столб воздуха, давящий на ртуть, тем ниже будет столб ртути в барометрической трубке.

  114