ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Змеиное гнездо

Как всегда, интересно >>>>>

Миф об идеальном мужчине

Чуть скомканно окончание, а так очень понравилось >>>>>

Меч и пламя

Прочесть можно, но ничего особо интересного не нашла. Обычный середнячок >>>>>

Сокровенные тайны

Вроде ничего, но мне хотелось бы концовки подобрей >>>>>

Брак не по любви

Ну и имя у героини. Не могли придумать что нибудь поромантичнее >>>>>




  105  

Геометрия стала наукой только после того, как в ней начали систематически применять логические доказательства, начали выводить геометрические предложения не только путем непосредственных измерений, но и путем умозаключений, путем вывода одного положения из другого, и устанавливать их в общем виде. Обычно этот переворот в геометрии связывают с именем ученого и философа VI века до нашей эры Пифагора Самосского».

Однако все новые проблемы и созданные в связи с ними теории привели к тому, что совершенствовались сами способы математических доказательств, возрастала потребность создания стройной логической системы в геометрии.

«Но как строить такую систему? — спрашивает И.Г. Башмакова. — Ведь каждое отдельное предложение мы доказываем, опираясь на некоторые другие предложения. Эти предложения в свою очередь доказываются ссылкой на какие-тр третьи предложения и т. д., эти ссылки мы могли бы продолжать до бесконечности, и процесс доказательства никогда бы не закончился. Как же быть? Это обстоятельство заметили еще в древности, и тогда же был найден выход. Не позднее IV века до нашей эры греческие математики при построении геометрии выбирали некоторые предложения, которые принимались без доказательства, а все остальные предложения выводили из них строго логически. Предложения, принятые без доказательства, назывались аксиомами и постулатами. Наиболее совершенным образцом такой теории на протяжении более 2 тысяч лет служили „Начала“ Евклида, написанные около 300 года до нашей эры».

О жизни Евклида (около 365 г. до нашей эры — 300 г. до нашей эры) почти ничего не известно. До нас дошли только отдельные легенды о нем. Первый комментатор «Начал» Прокл (V век нашей эры) не мог указать, где и когда родился и умер Евклид. По Проклу, «этот ученый муж» жил в эпоху царствования Птолемея I. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: «Евклид, сын Наукрата, известный под именем „Геометра“, ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира».

Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему легкий путь к математике. «К геометрии нет царской дороги», — ответил ему ученый. Так в виде легенды дошло до нас это ставшее крылатым выражение.

Царь Птолемей I, чтобы возвеличить свое государство, привлекал в страну ученых и поэтов, создав для них храм муз — Мусейон. Здесь были залы для занятий, ботанический и зоологический сады, астрономический кабинет, астрономическая башня, комнаты для уединенной работы и главное — великолепная библиотека. В числе приглашенных ученых оказался и Евклид, который основал в Александрии — столице Египта — математическую школу и написал для ее учеников свой фундаментальный труд.

Именно в Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединенных под общим названием «Начала» — главный труд своей жизни. Полагают, что он был написан около 325 года до нашей эры.

Предшественники Евклида — Фалес, Пифагор, Аристотель и другие много сделали для развития геометрии. Но все это были отдельные фрагменты, а не единая логическая схема.

Как современников, так и последователей Евклида привлекала систематичность и логичность изложенных сведений. «Начала» состоят из 13 книг, построенных по единой логической схеме. Каждая из книг начинается определением понятий (точка, линия, плоскость, фигура и т. д.), которые в ней используются, а затем на основе небольшого числа основных положений (5 аксиом и 5 постулатов), принимаемых без доказательства, строится вся система геометрии.

В то время развитие науки и не предполагало наличия методов практической математики. Книги I–IV охватывали геометрию, их содержание восходило к трудам пифагорейской школы. В книге V разрабатывалось учение о пропорциях, которое примыкало к Евдоксу Книд-скому. В книгах VII–IX содержалось учение о числах, представляющее разработки пифагорейских первоисточников. В книгах X–XII содержатся определения площадей в плоскости и пространстве (стереометрия), теория иррациональности (особенно в X книге); в XIII книге помещены исследования правильных тел, восходящие к Теэтету.

«Начала» Евклида представляют собой изложение той геометрии, которая известна и поныне под названием Евклидовой геометрии. В качестве постулатов Евклид выбрал такие предложения, в которых утверждалось то, что можно проверить простейшими построениями с помощью циркуля и линейки. Евклид принял также некоторые общие предложения-аксиомы, например, что две величины, порознь равные третьей, равны между собой. На основе таких постулатов и аксиом Евклид строго и систематично развил всю планиметрию.

  105